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Most methods of working non-isothermal kinetic data are based on the 
integral form of the rate equation: 

da 

f(l - a) 
= $ exp( - E/RT) dT 

where the symbols have their usual meanings. 
Let us denote the left- and right-hand sides of the integral equation as 

follows: 

Jl1 - 4 = J f(ld:a) 
I(T)=/exp(-E/RT)dT (3) 

Equation (3) defines the so-called “temperature integral” and a lot of work 
has been performed to obtain a better approximation of it. A previous paper 
[l] deals with a method to solve the integral, and the present paper aims to 
develop some more possibilities of the method. 

Let us suppose, according the quoted paper [l]: 

I(T) = q(T) exp( -E/RT) (4) 

q(T) being an unknown T function which has to satisfy the following 
differential equation: 

(Aa) 
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THE FUNCTION q(T) 

(a) We have proposed [l] the following form of q(T): 

q(T) = hT’ iER 

and it was found that: 

(5) 

(6) 

The condition of having an exact solution for the temperature integral leads 
to the following equation for i: 

i2- (1- E/RT)i-2E/RT=O 

which has two roots: 

(7) 

i 
1 - E/RT + /[ (1 - E/RT)* + 8E/RT] 

1.2 = 2 (74 

The quoted paper discussed only the best positive i-integer value approxima- 
tion, and proved it for i = 2, i.e. the Doyle-Gorbachev solution [2]: 

I’” = 
E +R;;T exp( - E/RT) 

Let us now write: 

l- E/RT_t (l- E/RT+ 21) 

(8) 

11.2 = 2 

where 1 is an adjusting parameter. For i = i, = - 1 it turns out that: 

I”” = .“yiT exp( - E/RT) (84 

which is basically identical to eqn. (8). For i = i, = 1 + I - E/RT we obtain: 

1(12) = 
& exp( -E/RT) (8b) 

Equation (8b), together with eqns. (1) and (2), allows us to write: 

F(1 - CY) = $ & exp( - E/RT) 

and taking the logarithms and rearranging the terms one obtains: 

In $ = - + + In $ - ln(1 + I) (9) 

(b) Another form which we suggest to be used for q(T) is the following: 

q(T) = c exp(P) (LO) 

Equation (4a) becomes: 

cj exp(jT) + SC exp(jT) = 1 
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which gives: 

1 
c= 

j+E/RT2 
exd -jT) 

The temperature integral has, therefore, the following solutions: 

I(J) = 
1 

ji-E/RT2 
exp(- E/RT) (11) 

The condition to obtain an exact solution for the integral leads to: 

j'++j+-_= 2E 0 
RT3 

with two roots: 

j,., = 
-E/RT% [(E/RT~)*-~E/RT~] 

= -E/RT2_+(~/~~'-2m) 

2 2 

= -morm-E/RT2 02) 

where m is an adjusting parameter. The corresponding forms of the temper- 
ature integral are: 

IJ’ = 
RT2 

E-mRT2 
exp(- E/RT) 

IJz = 1 exp(- E/RT) 

Subsequently, two other integral equations will be obtained: 

In+=-&+ln++ln 
R 

E-mRT* 

lnF=-&+ln$-lnm 

(13) 

034 

Summing up, the approach proposed leads to three different approximations 
of the temperature integral and subsequently to three integral equations, 
viz. : 

(A) 

In F-ln T= -&+ln A-ln b-ln(l+Z) (B) 

In 
R 

lnF--21nT=-$+lnA-lnh+ 
E-IRT 

In 
R 

E-mRT2 

((9 
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The first and the third equations are mathematically identical to those of 
Flynn-Wall [3], Ozawa [4] and Doyle-Gorbachev [2] and Coats-Redfern [5] 
and all three are particular forms of a general equation which can be written 
as follows: 

lnF-rlnT=-&+lnA-lnh+L (14) 

where r = 0, 1 or 2, and L is an adjusting parameter. Higher values of r (or 
even rational values in the range O-2) would probably be obtained within 
the frame of other approaches. 

It is not possible to establish a priori which of the forms of eqn. (14) 
allows the most accurate value of the activation energy 
However, it seems that an increased r value will make the 
eqn. (14) less sensitive to the variation of (Y. 

to be obtained. 
left-hand side of 

APPLICATION OF EQN. (14) 

Equation (14), for Y = 0, 1 and 2 has been applied to evaluate the 
non-isothermal kinetic parameters of decomposition of calcium oxalate 
using the data from ref. 6, obtained for three different heating rates, i.e. 
b = 2.3, 7.4 and 14.8 K mm’. 

The form of the conversion integral has been chosen as 

P(1 - a) = -ln(l - a) 

but the right choice of the function can be proved by the slope value of - 1 
when In F(1 - a) is plotted vs. In b, at constant temperature for eqn. (14). 

The plot of the left-hand side of each of the three equations vs. l/T 
should give the activation energy. The results are given in Table 1. Equation 
(A) also offers this value from the slope of the plot In b vs. l/T, at constant 
conversion. The results obtained for (Y within the 0.1-0.9 range are given in 

Table 2. 
From Table 1 the following hierarchies are obtained: 

For the same heating rate : E A > E B > EC 

For the same equation: Ebl > Eb2 > Eh3 

TABLE 1 

Activation energy and correlation coefficients for the plot (In F - r In T) vs. l/T with r = 0, 

1 and 2 

B (K min-‘) E (kcal mol-‘) Correlation coefficient 

r=O(A) r=l (B) r = 2 (C) r=O(A) r=l (B) r=2(C) 

2.3 23.0 22.1 21.2 0.99676 0.99655 0.99631 
7.4 22.3 21.4 20.5 0.99642 0.99618 0.99589 

14.8 21.5 20.6 19.6 0.99486 0.99446 0.99400 
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TABLE 2 

Activation energy and correlatton coefficients for the plot (In h) vs. l/T 

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
E (kcal mall’) 26.81 26.33 25.88 24.15 24.50 24.03 24.16 24.78 24.51 
Corr. coef. 0.978 0.981 0.954 0.963 0.986 0.987 0.989 0.988 0.983 

TABLE 3 

Pre-exponential factor computed from eqn. (14) for L = 0 

b (K mint) 

2.3 
7.4 

14.8 

A (s-l) 

r=O(A) 

1.4x 10” 
6.3 x 10” 
3.9 x 1o’O 

r=l (B) r = 2 (C) 

1.1 x 10’0 9.0 x 1o’O 
4.9 x 10’0 3.8 x 10’0 
3.0 x 10’0 2.3 x 10” 

Comparing the value of activation energy given by ref. 6 it appears that Ei 
is the best result and Et3 the worst. The correlation coefficients seem to 
indicate the same tendency, their values decreasing from Eh"; to E,:, even if 
only at the third and fourth figures. The results seem to support our 
suggestion of the role of r value, its increase leading to a decrease of the 
energy values. The influence of increasing heating rate has already been 
discussed in the literature [7] and the results of Table 1 agree with ref. 7. The 
values obtained in Table 2 are higher than those of Table 1, and the 
correlation coefficients are lower than the others. An explanation of these 
differences can be suggested by the different number of data for computa- 
tion which is used in the two methods. Another possible reason is the 
differences which lie in the method themselves, Table 1 using the F function 
and Table 2 using the b function. However, the results of both tables are 
close enough. 

Another fact to be pointed out is the small influence of L on the 
intercepts which, at least for this reaction, seems to be negligible. The values 
of pre-exponential factor computed for L = 0 are given in Table 3. All nine 
values of the pre-exponential factor are close enough to the literature values 

171. 

CONCLUSION 

A general integral equation to be used in non-isothermal kinetics was 
derived. Particular forms of this equation, for r = 0, 1 and 2 (eqn. A, B and 
C) were used in order to compute the kinetic parameters of the calcium 
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oxalate decomposition reaction and the results, given in the Tables 1, 2 and 
3 are in good agreement with literature values. 

A small heating rate and use of the Y = 0 equation seem to be the best 
conditions for good agreement with reality. 
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